Linear Algebra, Winter 2022

List 2

Lines and planes
29. Calculate the distance between the points $(5,1,1)$ and $(-8,0,7)$. $\sqrt{234}$, or $3 \sqrt{26}$

The cross product of $\vec{a}=\left[a_{1}, a_{2}, a_{3}\right]$ and $\vec{b}=\left[b_{1}, b_{2}, b_{3}\right]$ is written $\vec{a} \times \vec{b}$. It is the vector that is perpendicular to \vec{a} and \vec{b}, has length $|\vec{a}||\vec{b}| \sin (\theta)$, where θ is the angle between \vec{a} and \vec{b}, and whose direction obeys the Right-Hand Rule.

To calculate $\vec{a} \times \vec{b}$, we can use $\hat{\imath} \times \hat{\jmath}=\hat{k}, \hat{\jmath} \times \hat{k}=\hat{\imath}, \hat{k} \times \hat{\imath}=\hat{\jmath}$ and very careful algebra, or use the direct formula

$$
\vec{a} \times \vec{b}=\left(a_{2} b_{3}-a_{3} b_{2}\right) \hat{\imath}+\left(a_{3} b_{1}-a_{1} b_{3}\right) \hat{\jmath}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \hat{k} .
$$

30. (a) Give an example of a vector parallel to $9 \hat{\imath}+6 \hat{\jmath}+2 \hat{k}$ that has magnitude 2 . How many vectors with those two properties exist?
There are only two examples: $\left[\frac{18}{11}, \frac{12}{11}, \frac{4}{11}\right]$ and $\left[\frac{-18}{11}, \frac{-12}{11}, \frac{-4}{11}\right]$.
(b) Give an example of a vector perpendicular to $9 \hat{\imath}+6 \hat{\jmath}+2 \hat{k}$ that has magnitude 2. How many vectors with those two properties exist? There are infinitely many examples. One is $\left[\frac{2}{\sqrt{85}}, 0, \frac{-9}{\sqrt{85}}\right]$.
(c) Give an example of a vector that is perpendicular to $9 \hat{\imath}+6 \hat{\jmath}+2 \hat{k}$ and also perpendicular to $5 \hat{\imath}+5 \hat{k}$ and has magnitude 2 . How many vectors with those three properties exist? There are exactly two: $\pm\left[\frac{12}{11},-\frac{14}{11},-\frac{12}{11}\right]$.

The vector \vec{r} is used for $[x, y]$ in 2D and $[x, y, z]$ in 3D.
31. Re-write $\left\{\begin{array}{l}x=2+5 t \\ y=3 t \\ z=9\end{array}\right.$ as a single equation using vectors.

There are multiple correct answers, including $\vec{r}=\left[\begin{array}{l}2 \\ 0 \\ 9\end{array}\right]+t\left[\begin{array}{l}5 \\ 3 \\ 0\end{array}\right]$ and $\vec{r}=\left[\begin{array}{c}2+5 t \\ 3 t \\ 9\end{array}\right]$.
32. Describe in words the set of points (x, y) that satisfy
(a) $y=x^{2}$. parabola
(b) $x^{2}+y^{2}=100$. circle
(c) $|x \hat{\imath}+y \hat{\jmath}|=100$. circle This has exactly the same points as (b).
(d) $|\vec{r}|=100$. circle This has exactly the same points as (b).
(e) $3 x+2 y=0$. line 1

[^0](f) $\left[\begin{array}{l}3 \\ 2\end{array}\right] \cdot\left[\begin{array}{l}x \\ y\end{array}\right]=0$. line This has exactly the same points as (e).
(g) $(3 \hat{\imath}+2 \hat{\jmath}) \cdot \vec{r}=0$. line This has exactly the same points as (e).

A vector that is parallel to a line is called a direction vector for the line.
The line through $\left(x_{0}, y_{0}, z_{0}\right)$ with direction $\vec{d}=[a, b, c]$ has "vector equation"

$$
\stackrel{\rightharpoonup}{r}=\vec{p}+t \stackrel{\rightharpoonup}{d}
$$

To describe it without vectors we can use the three "parametric equations"

$$
x=x_{0}+a t, \quad y=y_{0}+b t, \quad z=z_{0}+c t .
$$

33. Describe the line through the point $(2,2.4,3.5)$ and parallel to the vector $3 \hat{\imath}+2 \hat{\jmath}-\hat{k}$ using the parameter t in
(a) one vector equation. $\vec{r}=[2,2.4,3.5]+t[3,2,-1]$
(b) three scalar equ-
ations. $x=2+3 t, \quad y=2.4+2 t, \quad z=3.5-t$
34. Write an equation for the line through points $(2,3,1)$ and $(-3,7,0)$.
$\vec{d}=[2,3,1]-[-3,7,0]=[5,-4,1]$
An equation (really, 3 equations) for this line is $x=2+5 t, y=3-4 t, z=1+t$.
Other correct answers are also possible such as $x=-3+5 t, y=7-4 t, z=t$.
35. Determine whether the point $(9,-10,3)$ is on the line

$$
x=5+2 t, \quad y=2-6 t, \quad z=-1-t .
$$

This is the same as asking whether there is a single value of t for which

$$
9=5+2 t \quad \text { and } \quad-10=2-6 t \text { and } 3=-1-t
$$

The point $(9,-10,3)$ is not on the line.
36. Is the point $(4,8,7)$ on the line $\vec{r}=[1,2,6]+[3,8,9] t$?

The point $(4,8,7)$ is not on the line.
37. Find the point where the lines

$$
\begin{array}{ll}
L_{1}: & x=35+2 t, y=9+t, z=-24-4 t \\
L_{2}: & x=-3+2 s, y=16-3 s, z=13+2 s
\end{array}
$$

intersect. That is, find one value of t and one value of s such that

$$
35+2 t=-3+2 s \quad \text { and } 9+t=16-3 s \quad \text { and } \quad-24-4 t=13+2 s
$$

and then either use t to calculate the (x, y, z)-coordinates of the point from L_{1} or use s to calculate the (x, y, z)-coordinates of the point from L_{2}.
$t=-25 / 2$ and $s=13 / 2$ both give the point $\left(10, \frac{-7}{2}, 26\right)$
38. Do the lines

$$
\begin{array}{ll}
L_{1}: & x=3+t, y=2-2 t, z=1+5 t \\
L_{2}: & x=8-3 s, y=1+s, z=-10+5 s
\end{array}
$$

intersect? If so, find the intersection point and the angle between the two lines at that point (using a calculator for $\cos ^{-1}$).
The lines intersect at the point $(13 / 5,14 / 5,-1)$ (this corresponds to $t=-2 / 5$ for L_{1} and $s=9 / 5$ for L_{2}). The angle between the lines is the angle between the direction vectors $\vec{a}=[1,-2,5]$ and $\vec{b}=[-3,1,5]$, which is

$$
\arccos \left(\frac{\stackrel{\rightharpoonup}{a} \cdot \stackrel{\rightharpoonup}{b}}{|\stackrel{\rightharpoonup}{a}||\stackrel{\rightharpoonup}{b}|}\right)=\arccos \left(\frac{20}{5 \sqrt{42}}\right) \approx 0.9056 \approx 51.89^{\circ}
$$

39. Do the lines

$$
\begin{array}{ll}
L_{1}: & x=3+t, y=2-2 t, z=1+5 t \\
L_{3}: & x=5+2 s, y=-6-s, z=7-4 s
\end{array}
$$

intersect? If so, find the intersection point and the angle between the two lines at that point (using a calculator for $\cos ^{-1}$).

No intersection

40. Explain why the parametric equations

$$
\left\{\begin{array} { l }
{ x = 1 - t } \\
{ y = 2 - 3 t } \\
{ z = 4 t }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
x=2 s \\
y=-1+6 s \\
z=4-8 s
\end{array}\right.\right.
$$

describe the same line.
The direction vectors $[-1,-3,4]$ and $[2,6,-8]$ are parallel, so the lines are in the same direction, AND the point $(1,2,0)$ from $t=0$ on the first line is also on the second line (when $s=\frac{1}{2}$).

A vector that is perpendicular to a plane is called a normal vector for the plane.
The plane through point $\left(x_{0}, y_{0}, z_{0}\right)$ with normal vector $\vec{n}=[a, b, c]$ has
"vector equation"

$$
\vec{n} \cdot(\vec{r}-\vec{p})=0
$$

"scalar equation"
$a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0$
"standard equation" $a x+b y+c z=d$
where $\vec{p}=\left[x_{0}, y_{0}, z_{0}\right]$ and $d=\vec{n} \cdot \vec{p}$.
41. Find a scalar equation for the plane through the origin perpendicular to the vector $[1,-2,5]$. With vectors, $[1,-2,5] \cdot[x, y, z]=0$, so this is $x-2 y+5=0$.
42. Find an equation for the plane through the point $(1,-1,-1)$ parallel to the plane $5 x-y-z=6$. The first plane is normal to $\vec{n}=[5,-1,-1]$, so this one is also normal to the same vector. One equation for the plane is

$$
[5,-1,-1] \cdot([x, y, z]-[1,-1,-1])=0
$$

By expanding the dot product, we get the equivalent equation

$$
5(x-1)+(-1)(y+1)+(-1)(z+1)=0
$$

This can be simplified to just

$$
5 x-y-z=7
$$

43. Find the intersection point of the line L and the plane P, where

$$
\begin{aligned}
& L: \quad x=t, y=1-2 t, z=-3+2 t \\
& P: \quad 3 x-y-2 z=3 .
\end{aligned}
$$

The value of t for this intersection point satisfies

$$
\begin{aligned}
3 x-y-2 z & =3 \\
3(t)-(1-2 t)-2(-3+2 t) & =3 \\
t+5 & =3 \\
t & =-2
\end{aligned}
$$

The coordinates of this point are therefore

$$
x=-2, \quad y=1-2(-2)=5, \quad z=-3+2(-2)=-7,
$$

so the point is $(-2,5,-7)$.
44. Find the distance between the point $(-6,3,5)$ and the plane $x-2 y-4 z=8$ using the following steps:
(a) Give a vector that is perpendicular to the plane $x-2 y-4 z=8$.
(b) Give an equation for the line through $(-6,3,5)$ perpendicular to the plane $x-2 y-4 z=8$ (that is, parallel to the vector from part (a)).
(c) Find the point where the plane $x-2 y-4 z=8$ and the line from part (b) intersect.
(d) Calculate the distance between $(-6,3,5)$ and the point from part (c). This is exactly the distance between $(-6,3,5)$ and the plane $x-2 y-4 z=8$.

The closest point to P on the plane $x-2 y-4 z=8$ is on the line through P that is perpendicular to $x-2 y-4 z=8$. That line has direction vector $\vec{v}=[1,-2,-4]$, the same as the normal vector for the plane, so that line is

$$
\vec{r}=[-6,3,5]+[1,-2,-4] t
$$

or

$$
\vec{r}=[-6+t, 3-2 t, 5-4 t] .
$$

The intersection of this line with $x-2 y-4 z=8$ occurs when

$$
\begin{aligned}
(-6+t)-2(3-2 t)-4(5-4 t) & =8 \\
-32+21 t & =8 \\
t & =40 / 21
\end{aligned}
$$

which corresponds to the point

$$
\left[-6+\frac{40}{21}, 3-2 \frac{40}{21}, 5-4 \frac{40}{21}\right]=\left[\frac{-86}{21}, \frac{-17}{21}, \frac{-55}{21}\right] .
$$

The distance between $(-6,3,5)$ and $\left(\frac{-86}{21}, \frac{-17}{21}, \frac{-55}{21}\right)$ is

$$
\sqrt{\left(-6-\frac{-86}{21}\right)^{2}+\left(3-\frac{-17}{21}\right)^{2}+\left(5-\frac{-55}{21}\right)^{2}}=\frac{40}{\sqrt{21}} .
$$

45. Consider the planes

$$
\begin{array}{ll}
P_{1}: & 8(x-1)+6(y+3)+16(z+7)=0, \\
P_{2}: & 4 x+3 y+8 z=27 .
\end{array}
$$

(a) Do the planes intersect? No intersection because the normal vectors $\overrightarrow{n_{1}}=$ $[8,6,16]$ and $\overrightarrow{n_{2}}=[4,3,8]$ are parallel and the two planes are not the same plane (because, for example, $(0,7,0)$ is on P_{2} but not $\left.P_{1}\right)$.
(b) If the planes intersect, find the angle between the planes.
(c) If the planes intersect, give an equation for the line that is their intersection.
46. Consider the planes

$$
\begin{array}{ll}
P_{1}: & 8(x-1)+6(y+3)+16(z+7)=0, \\
P_{2}: & 2 x-3 y+7 z=1
\end{array}
$$

(a) Do the planes intersect? Yes
(b) If the planes intersect, find the angle between the planes. This is the angle between the normal vectors $\overrightarrow{n_{1}}=[8,6,16]$ and $\overrightarrow{n_{2}}=[2,-3,7]$, which is $\cos ^{-1}\left(\frac{55}{\sqrt{5518}}\right) \approx 42.2^{\circ}$.
(c) If the planes intersect, give an equation for the line that is their intersection.

One possible description of the line is

$$
x=5+15 t, \quad y=-11-4 t, \quad z=-6-6 t .
$$

47. Find parametric equations for the line that is the intersection of the two planes $x+y=3$ and $y+z=1$.
The point $(2,1,0)$ is on both planes, so it is part of their intersection. The line will be perpendicular to the normal vectors for each plane. That is, it will be perpendicular to $[1,1,0]$ and $[0,1,1]$. Such a vector $[a, b, c]$ can be found using the cross product

$$
[1,1,0] \times[0,0,1]=[1,-1,1]
$$

or by finding any solution other than $[0,0,0]$ to the system

$$
\left\{\begin{array} { l }
{ 1 a + 1 b + 0 c = 0 } \\
{ 0 a + 1 b + 1 c = 0 }
\end{array} \quad \rightarrow \quad \left\{\begin{array}{l}
a+b=0 \\
b+c=0
\end{array}\right.\right.
$$

(there are infinitely many such solutions, all scalar multiples of $[1,-1,1]$).
The line through $(2,1,0)$ with direction vector $[1,-1,1]$ is

$$
x=2+t, y=1-t, z=t \text {. }
$$

48. Find the acute angle between the line and the plane (at the point where they intersect):

$$
\begin{array}{ll}
L: & x=5+\sqrt{3} t, y=\sqrt{5}+3 t, z=-1+2 t ; \\
P: & (x+6)+\sqrt{3}(y-4)+2 \sqrt{3} z=0 .
\end{array}
$$

This is 90° (or $\frac{\pi}{2}$) minus the angle between \vec{d} (line's direction vector) and \vec{n} (plane's normal vector).

$$
\begin{aligned}
\vec{d} & =[\sqrt{3}, 3,2] & & |\vec{d}|=\sqrt{3+9+4}=\sqrt{16}=4 \\
\vec{n} & =[1, \sqrt{3}, 2 \sqrt{3}] & & |\vec{n}|=\sqrt{1+3+4 \cdot 3}=\sqrt{16}=4 \\
\vec{d} \cdot \stackrel{\rightharpoonup}{n} & =\sqrt{3}+3 \sqrt{3}+4 \sqrt{3}=8 \sqrt{3} & &
\end{aligned}
$$

Therefore $8 \sqrt{3}=(4)(4) \cos \theta$, so $\cos \theta=\frac{8 \sqrt{3}}{16}=\frac{\sqrt{3}}{2}$ and $\theta=30^{\circ}$.
The final answer is $90^{\circ}-30^{\circ}=60^{\circ}$ or $\frac{\pi}{3}$. (If the task did not specify that the angle should be acute, then either $90^{\circ}+30^{\circ}=120^{\circ}$ or $90^{\circ}-30^{\circ}=60^{\circ}$ would be correct.)
49. If a is a scalar, \vec{b} is a 2D vector, and \vec{c} is a 3D vector, which of the following calculations are possible?
(a) $5+a$ possible
(b) $5+\vec{b}$ impossible
(c) $5 a$ possible
(d) $5 \vec{c}$ possible
(e) $\vec{b}+\vec{c}$ impossible
(f) $\vec{b} \cdot \vec{c}$ impossible
(g) $\frac{\vec{c}}{5}$ possible
(h) $\frac{\vec{c}}{|\vec{b}|}$ possible
(i) $\frac{\vec{c}}{\vec{b}}$ impossible
(j) $\frac{\vec{c}}{\vec{c}}$ impossible
(k) \vec{a}^{3} impossible
(l) $5+|\vec{c}|^{3}$ possible
(m) $|5 \vec{a}|^{3}$ possible
(n) $|\vec{a}|+|\vec{c}|$ possible
(o) $|\vec{c}| \vec{a}$ possible

[^0]: ${ }^{1}$ The task explicitly states that this is about sets in \mathbb{R}^{2}. The set of points (x, y, \boldsymbol{z}) that satisfy $3 x+2 y=0$ is a plane in \mathbb{R}^{3}.

